Part Number Hot Search : 
T74LS05 EM6353 CHDTA 307C1296 TK20J60W 3LB67 A200RHI 103J100
Product Description
Full Text Search
 

To Download EP312 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 www..com
(R)
EP312 & EP324 Classic EPLDs
Data Sheet
April 1995, ver. 1
Features
s
s s s s s s s s
s s s s s
High-performance EPLDs with 12 macrocells (EP312) or 24 macrocells (EP324) - Combinatorial speeds as fast as 25 ns - Counter frequencies of up to 33.3 MHz - Pipelined data rates of up to 66 MHz Multiple 20-pin PAL and GAL replacement and integration Device erasure and reprogramming with advanced, nonvolatile EPROM configuration elements Programmable registers providing D, T, JK, and SR flipflops with individual Clear and Clock controls Dual feedback on all macrocells for implementing buried registers with bidirectional I/O Programmable-AND/allocatable-OR structure allowing up to 16 product terms per macrocell DataShee Two product terms on all macrocell control signals Programmable inputs (8 in EP312, 10 in EP324) configurable as .com latches, registers, or flow-through input Available in windowed ceramic and one-time-programmable (OTP) plastic packages with 24 to 44 pins: - 24-pin ceramic and plastic dual in-line package (CerDIP and PDIP) - 28-pin plastic J-lead chip carrier (PLCC) - 40-pin CerDIP and PDIP - 44-pin PLCC One global Clock pin; one global Input Latch Enable/Input Clock/Input (ILE/ICLK/INPUT) pin Programmable "standby" option for low-power operation Programmable Security Bit for total protection of proprietary designs 100% generically testable to provide 100% programming yield Software design support with the Altera PLDshell Plus software and a wide range of third-party tools; programming support through third-party vendors
General Description
The CMOS EPROM EP312 and EP324 devices have a versatile macrocell structure and I/O architecture, which allow them to implement highperformance logic functions effectively. The EP312 and EP324 input and macrocell features are a superset of features offered by PAL/GAL devices. Therefore, EP312 and EP324 devices can be used as an alternative to multiple PAL/GAL devices, SSI and MSI logic devices, or low-end gate arrays.
1
.com
Altera Corporation
A-DS-312/324.01
DataSheet 4 U .com
www..com
EP312 & EP324 Classic EPLDs
EP312 and EP324 devices operate in high-performance systems with low power consumption. The programmable standby function provides "zero" power consumption for applications where performance can be traded for power savings.
Functional Description
The EP312 and EP324 architecture is based on a sum-of-products programmable-AND/allocatable-OR structure. EP312 and EP324 devices can implement combinatorial and sequential logic functions, as well as combinatorial-register and register-combinatorial-register logic forms, to easily accommodate state machine designs. Figure 1 and Figure 2 show block diagrams of the EP312 and EP324 architectures. The EP312 device contains 12 I/O macrocells and 8 programmable input structures; the EP324 device contains 24 I/O macrocells and 10 programmable input structures. EP312 and EP324 macrocells are divided into 2 rings for product-term allocation. Both devices have 2 additional inputs that can be programmed either as combinatorial inputs or Clock inputs. Each input structure can be individually configured as a latch, register, or flow-through input. Input latches and registers can be clocked synchronously or asynchronously.
t4U.com
Figure 1. EP312 Block Diagram
Clock/Input 1
DataShee
.com
Global Clock
Input/Register/Latch
Macrocell 1 Macrocell 2 Macrocell 3 Macrocell 4 Macrocell 5 Macrocell 6 1 2 3 4 5 6
Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 Input 8
Ring 1
Global Bus
Global Clock
Macrocell 7 Macrocell 8 Macrocell 9 Macrocell 10 Macrocell 11 Macrocell 12
7 8 9 10 11 12
Ring 2
Input Latch Enable/Input Clock/Input 2
.com
2 Altera Corporation
DataSheet 4 U .com
www..com
EP312 & EP324 Classic EPLDs
Figure 2. EP324 Block Diagram
Input/Register/Latch
Clock/Input 1 Global Clock
Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 Input 8 Global Bus
Macrocell 1 Macrocell 2 Macrocell 3 Macrocell 4 Macrocell 5 Macrocell 6 Macrocell 7 Macrocell 8 Macrocell 9 Macrocell 10 Macrocell 11 Macrocell 12 Global Clock Macrocell 13 Macrocell 14 Macrocell 15 Macrocell 16 Macrocell 17 Macrocell 18 Macrocell 19 Macrocell 20 Macrocell 21 Macrocell 22 Macrocell 23 Macrocell 24
1 2 3 4 5 6 7 8 9 10 11 12
Ring 1
t4U.com
Input 9 Input 10
.com
13 14 15 16 17 18 19 20 21 22 23 24
Ring 2
DataShee
Input Latch Enable/Input Clock/Input 2
The EP312 and EP324 architectures include the following features:
s s s s
Macrocells Product-term allocation Programmable inputs Power-on characteristics
Macrocells
Each EP312 and EP324 macrocell contains 16 product terms (see Figure 3). Half of the product terms are available to support logic functions; half are dedicated to the macrocell control signals. The inputs to the AND array originate from the true and complement signals of the programmable input structure, the dedicated inputs, and the 2 feedback paths from each I/O macrocell to the global bus.
.com
Altera Corporation 3
DataSheet 4 U .com
www..com
EP312 & EP324 Classic EPLDs
Figure 3. EP312 & EP324 Macrocell
Logic Array Lower Half Product Terms 1 to 4 to Previous Macrocell from Previous Macrocell Global Clock Output Enable
Output Multiplexer
4 Allocation Control 4 Upper Half Product Terms 1 to 4 Invert Control
PRN D/T Q
CLR
t4U.com
ILE/ICLK
Programmable Register
DataShee
.com
Clock Multiplexer
to Next Macrocell
from Next Macrocell
The eight product terms available for implementing logic functions are divided into two equal groups, and can be used in other macrocells. Each macrocell provides a dual feedback to the logic array. The eight product terms for control functions support the following four control signals, with two product terms each: Output Enable (OE), Preset, Clear, and asynchronous Clock. When the global Clock (CLK) signal synchronously clocks a macrocell register, it cannot function as an input to the logic array. However, the global Clock can simultaneously function as an input to the logic array and as an asynchronous, non-global Clock.
.com
4 Altera Corporation
DataSheet 4 U .com
www..com
EP312 & EP324 Classic EPLDs
To implement registered functions, each macrocell register can be individually programmed for D, T, JK, or SR operation. If necessary, the register can be bypassed for combinatorial operation. The XOR gate can implement active-high or active-low logic, or use DeMorgan's inversion to reduce the number of product terms required to implement a function. Registers are cleared automatically during power-up. The macrocell output can be fed back to the logic array via two paths. Pin feedback that is connected after the output buffer can be used to implement bidirectional I/O; if internal feedback is used for a buried register or logic function, the pin feedback can be used as an input.
Product-Term Allocation
t4U.com
In EP312 and EP324 devices, product-term resources can be taken from one macrocell and used in another. For product-term allocation, macrocells in both the EP312 and EP324 are divided into 2 rings. The EP312 has 6 macrocells per ring; the EP324 has 12 macrocells per ring. Product terms from one macrocell can be allocated to adjacent macrocells in the same ring. Product terms are allocated in groups of 4, and a macrocell can borrow up to 8 product terms (4 from each adjacent DataShee macrocell).
.com Table 1 and Table 2 show the product-term allocation rings for the EP312 and EP324 devices, respectively. The Altera PLDshell Plus design software automatically allocates product terms.
.com
Altera Corporation 5
DataSheet 4 U .com
www..com
EP312 & EP324 Classic EPLDs
Table 1. EP312 Product-Term Allocation Rings
Ring 1 Current Macrocell
1 2 3 4 5 6
Ring 2 Previous Macrocell
6 1 2 3 4 5
Next Macrocell
2 3 4 5 6 1
Current Macrocell
7 8 9 10 11 12
Next Macrocell
8 9 10 11 12 7
Previous Macrocell
12 7 8 9 10 11
Table 2. EP324 Product-Term Allocation Rings
Ring 1 Current Macrocell
1 2 3 4 5 6 7 8 9 10 11 12
Ring 2 Previous Macrocell
2 3 5 6 12 1 7 8 9 10 11
Sheet4U.com
Next Macrocell
7 1 3 4 5 8 9 10 11 12 6
Current Macrocell
13 14 16 17 18 19 20 21 22 23 24
Next Macrocell
19 13 14 15 16 17 20 21 22 23 24 18
Previous Macrocell
14 15 16 17 18 24 13 19 20 21 22 23
Data
D a 2t a S h e4 e t 4 U 15 c o m .
Programmable Inputs
Figure 4 shows a block diagram of the EP312 and EP324 input structure. The user-programmable inputs can be individually configured to operate in the following modes:
s s s s s
.com
6
Input D register, synchronously clocked Input D register, asynchronously clocked Input D latch, synchronously clocked Input D latch, asynchronously clocked Flow-through input
Altera Corporation
D a t a S 4 Ue c o m h .et
www..com
EP312 & EP324 Classic EPLDs
Figure 4. EP312 & EP324 Input Structure
Product Term from Logic Array
INPUT D Q to Logic Array
ILE/ICLK/INPUT Synchronous/ Asynchronous Select
Latch/Register Select
t4U.com
The ILE/ICLK/INPUT pin is a dedicated input to the logic array. For synchronous operation, the ILE/ICLK/INPUT pin becomes a global ILE/ICLK input to all latch/register/input structures; for asynchronous operation, a separate product term in the logic array is used to derive the ILE/ICLK signal for each input structure. Because the Clock signal for each programmable input can be selected individually, a combination of asynchronously and synchronously clocked inputs is available. Flowthrough operation occurs when the ILE product term is tied to VCC. Data is latched or clocked on the falling edge of ILE/ICLK in synchronous mode.
DataShee
.com Power-On Characteristics
EP312 and EP324 inputs and outputs respond between 6 s and 10 s after power-up, or after a power-loss/power-up sequence. All macrocells programmed as registers are set to a logic low on power-up. Input registers are not reset on power-up and their values are indeterminate. Input latches reflect the state of the input pins on power-up.
Design Security
EP312 and EP324 devices contain a programmable Security Bit that controls access to the data programmed into the device. When this bit is programmed, a proprietary design implemented in the device cannot be copied or retrieved. This feature provides a high level of design security, since programmed data within EPROM configuration elements is invisible. The Security Bit that controls this function, as well as all other program data, is reset when a device is erased. EP312 and EP324 devices contain a programmable Turbo Bit that controls the automatic power-down feature, which enables the low-standbypower mode (I CC1). When the Turbo Bit is turned on, the low-standbypower mode is disabled. All AC parameters are tested with the Turbo Bit turned on. When the device is operating with the Turbo Bit turned off (non-turbo mode), a non-turbo adder must be added to the appropriate AC parameter to determine worst-case timing. The non-turbo adder is specified in the "AC Operating Conditions" tables in this data sheet.
Turbo Bit
.com
Altera Corporation 7
DataSheet 4 U .com
www..com
EP312 & EP324 Classic EPLDs
Generic Testing
EP312 and EP324 devices are fully functionally tested and guaranteed. Complete testing of each programmable EPROM configuration element and all internal logic elements ensures 100% programming yield. AC test measurements are taken under conditions equivalent to those shown in Figure 5.
Figure 5. EP312 & EP324 AC Test Circuits
Power-supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for 460 accurate measurement. Threshold tests Device must not be performed under AC conditions. Large-amplitude, fast ground- Output current transients normally occur as the device outputs discharge the load capacitances. When these transients flow 238 through the parasitic inductance between the device ground pin and the test-system ground, significant reductions in observable noise immunity can result.
VCC
To Test System
C1 (includes JIG capacitance)
t4U.com
DataShee
Test programs are used and then erased during the early stages of a device production flow. EPROM-based devices in one-time-programmable .com packages also contain on-board logic test circuitry to allow verification of function and AC specifications during production flow.
Software & Programming Support f
The EP312 and EP324 are supported by the Altera PLDshell Plus design software and other industry-standard logic compilers (e.g., ABEL, CUPL, PLDesigner, LOG/IC, and iPLS II). The EP312 and EP324 are supported by third-party programming hardware. For more information on software support with PLDshell Plus, go to the PLDshell Plus/PLDasm User's Guide, which is available from the Altera Literature Department; refer to the Programming Hardware Manufacturers Data Sheet in the Altera Data Book for more information on third-party programming hardware support.
.com
8 Altera Corporation
DataSheet 4 U .com
www..com
EP312 & EP324 Classic EPLDs
Figure 6 shows the typical supply current (ICC) versus frequency for EP312 and EP324 devices.
Figure 6. EP312 & EP324 ICC vs. Frequency
EP312 EPLDs
120
EP324 EPLDs
240
100
200
ICC Active (mA) Typ.
ICC Active (mA) Typ.
Turbo
80
Turbo
160
60
VCC = 5.0 V TA = 25 C
120
VCC = 5.0 V TA = 25 C
40
Non-Turbo
80
Non-Turbo
20
40
t4U.com
10
20
30
40
10
20
30
40
DataShee
Frequency (MHz)
Frequency (MHz)
.com
.com
Altera Corporation 9
DataSheet 4 U .com
www..com
EP312 & EP324 Classic EPLDs
Figure 7 shows the maximum output drive characteristics of EP312 and EP324 I/O pins.
Figure 7. EP312 & EP324 Output Drive Characteristics
EP312 & EP324 EPLDs
50
Output Current (mA) Typ.
40
IOL
30
20
VCC = 5.0 V TA = 25 C IOH
10
IO
1
2
3
4
5
VO Output Voltage (V)
t4U.com
DataShee
.com
.com
10 Altera Corporation
DataSheet 4 U .com
www..com
EP312 & EP324 Classic EPLDs
Absolute Maximum Ratings
Symbol
VCC VI TSTG TAMB Supply voltage DC input voltage Storage temperature Ambient temperature
Note (1)
Conditions
Note (2) Notes (2), (3) Note (4)
Parameter
Min
-2.0 -0.5 -65 -10
Max
7.0 VCC + 0.5 150 85
Unit
V V C C
Recommended Operating Conditions
Symbol
VCC VIN VO TA TA tR tF Supply voltage Input voltage Output voltage Operating temperature Operating temperature Input rise time Input fall time For commercial use For industrial use
Parameter
Conditions
Min
4.75 0 0 0 -40
Max
5.25 VCC VCC 70 85 500 500
Unit
V V V C C ns ns
DC t4U.com Operating Conditions
Symbol
VIH VIL VOH VOH VOL II IOZ ISC
Note (5)
Parameter
DataShee
High-level input voltage Low-level input voltage High-level TTL output voltage High-level CMOS output voltage Low-level output voltage Input leakage current Tri-state output leakage current Output short-circuit current
.com
Note (2) Note (2)
Conditions
Min
2.0 -0.3 2.4 3.84
Max
VCC + 0.3 0.8
Unit
V V V V
IOH = -4.0 mA DC, VCC = min. IOH = -2 mA DC, VCC = min. IOL = 8 mA DC, VCC = min. VCC = max., GND < VIN < VCC VCC = max., GND < VOUT < VCC VCC = max., VOUT = 0.5 V, Note (6)
0.45 10 10 -30 -90
V A A mA
Capacitance
Symbol
CIN COUT CCLK CCLK CVPP
Note (5)
Parameter Conditions
VIN = 0 V, f = 1.0 MHz VOUT = 0 V, f = 1.0 MHz VOUT = 0 V, f = 1.0 MHz VOUT = 0 V, f = 1.0 MHz
Min
Max
8 15 12 15 25
Unit
pF pF pF pF pF
Input capacitance I/O capacitance EP312 ILE/ICLK/INPUT pin capacitance EP324 ILE/ICLK/INPUT pin capacitance VPP pin capacitance
Note (7), f = 1.0 MHz
.com
Altera Corporation 11
DataSheet 4 U .com
www..com
EP312 & EP324 Classic EPLDs
ICC Supply Current
Note (5)
EP312 EP324
Symbol
ICC1 ICC3
Parameter
Standby current VCC supply current
Conditions
VCC = max., VIN = VCC or GND, standby mode, Note (8), (9) VCC = max., VIN = VCC or GND, no load, fIN = 1 MHz, Note (9)
Min Typ Max Min Typ Max
100 10 300 150 20 500
Unit
A mA
Notes to tables:
(1) (2) (3) (4) (5) (6) (7) See Operating Requirements for Altera Devices in the current Altera Data Book. Voltage with respect to ground; all over- and undershoots due to system or tester noise are included. Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 7.0 V for periods of less than 20 ns under no-load conditions. Under bias. Extended temperature versions are also available. Operating conditions: V CC = 5 V 5%, TA = 0 C to 70 C for commercial use. V CC = 5 V 10%, TA = -40 C to 80 C for industrial use. Test one output at a time; test duration should not exceed one second. For EP312 devices: DIP packages, VPP is on pin 1 PLCC packages, VPP is on pin 2 For EP324 devices: DIP packages, VPP is on pin 18 PLCC packages, VPP is on pin 20 When the Turbo Bit is not set (non-turbo mode), an EP312 or EP324 device enters standby mode if no logic transitions occur for 100 ns after the last transition. For EP312 devices: parameter measured with device configured as one 12-bit counter. For EP324 devices: parameter measured with device configured as two 12-bit counters.
t4U.com
(8) (9)
DataShee
.com
.com
12 Altera Corporation
DataSheet 4 U .com
www..com
EP312 & EP324 Classic EPLDs
AC Operating Conditions: EP312 Combinatorial Mode
Symbol
tPD1 tPD2 tPZX tPXZ tPCLR tPSET
Note (1)
EP312-25 EP312-30 Non-Turbo Adder
Parameter
Input to non-registered output I/O to non-registered output Input or I/O to output enable, Note (3) Input or I/O to output disable, Note (3) Input or I/O to asynchronous reset Input or I/O to asynchronous set
Conditions
C1 = 35 pF C1 = 35 pF C1 = 35 pF C1 = 5 pF C1 = 35 pF C1 = 35 pF
Min
Max
25 25 25 25 25 25
Min
Max
30 30 30 30 30 30
Note (2)
20 20 20 20 20 20
Units
ns ns ns ns ns ns
Synchronous Clock Mode (Macrocells)
Symbol
fMAX fCNT1 fCNT2 tSU1
EP312-25
EP312-30
Non-Turbo Adder
Parameter
Maximum frequency (pipelined), no feedback Maximum counter frequency, external feedback Maximum counter frequency, internal feedback Input or I/O setup time to global clock Input or I/O setup time to global clock Input or I/O hold time from global clock Global clock to output delay Minimum global clock period Clock low time Clock high time Clock period
Min
66 33.3 33.3 15 15 0
Max
Min
50 26.3 28.5 20 20 0
Max
Note (2)
Units
MHz MHz MHz
20 20 0 18 35 0 20 0 0 0
ns ns ns ns ns ns ns
t4U.comtSU1
tH tCO tCNT tCL tCH tCP
ns DataShee
.com
7 7 15
15 30 9 9 20
Synchronous Clock (Input Structure)
Symbol
fMAXI tSUIR tESUI tCOI tEOI tHI tEHI tCHI tCLI tCPI
EP312-25
EP312-30
Non-Turbo Adder
Parameter
Maximum frequency input structure Input register/latch setup time to ILE/ICLK Input latch setup time to ILE, Note (4) ICLK to combinatorial output ILE up to combinatorial output Input hold after falling edge of ILE/ICLK Input hold after falling edge of ILE ILE/ICLK high time ILE/ICLK low time Minimum ICLK period
Min
66 5 5
Max
Min
50 5 5
Max
Note (2)
0 0
Units
MHz ns ns ns ns ns ns ns ns ns
35 35 7 7 7 7 15 10 10 9 9 20
40 40
20 20 0 0 0 0 0
.com
Altera Corporation 13
DataSheet 4 U .com
www..com
EP312 & EP324 Classic EPLDs
Asynchronous Clock Mode (Macrocells)
Symbol
fAMAX fACNT1 fACNT2 tASU1 tASU1 tAH tACO tACNT tACL tACH tACP
EP312-25
EP312-30
Non-Turbo Adder
Parameter
Maximum frequency (pipelined), no feedback Maximum counter frequency, external feedback Maximum counter frequency, internal feedback Input or I/O setup time to asynchronous clock Input or I/O setup time to asynchronous clock Input or I/O hold time from asynchronous clock Asynchronous clock to output delay Minimum global clock period Asynchronous clock low time Asynchronous clock high time Minimum asynchronous clock period
Min
66 28.5 33.3 10 10 5
Max
Min
50 23.8 30 12 12 5
Max
Note (2)
Units
MHz MHz MHz
20 20 0 30 35 20 20 20 20 20
ns ns ns ns ns ns ns ns
25 30 7 7 15 9 9 20
Asynchronous Clock (Input Structure)
Symbol
f t4U.comAMAXI tASUIR tAESUI tACOI tAEOI tAHI tAEHI tACHI tACLI tACPI
EP312-25
EP312-30
Non-Turbo Adder
Parameter
Maximum frequency input structure Input register/latch setup time to asynchronous ILE/ICLK Asynchronous ICLK to combinatorial output Asynchronous ILE up to combinatorial output Input hold after falling edge of asynchronous ILE/ICLK Input hold after falling edge of asynchronous ILE Asynchronous ILE/ICLK high time Asynchronous ILE/ICLK low time Minimum ICLK period
Min
66 0
Max
Min
50 0 0
Max
Note (2)
0 0
Units
ns ns ns ns ns ns ns ns ns
MHz DataShee
Input latch setup time to asynchronous ILE, Note (4) 0 .com 48 48 20 20 7 7 15
55 55 25 25 9 9 20
20 20 20 0 20 20 20
Input Clock to Macrocell Clock
Symbol
tC1C2 tC1C2 tC1C2 tC1C2
EP312-25
EP312-30
Non-Turbo Adder
Parameter
Synchronous ILE/ICLK to synchronous macrocell CLK Synchronous ILE/ICLK to asynchronous macrocell CLK Asynchronous ILE/ICLK to synchronous macrocell CLK Asynchronous ILE/ICLK to asynchronous macrocell CLK
Min
Max
25 15 35 25
Min
Max
30 18 40 35
Note (2)
20 20 20 20
Units
ns ns ns ns
Operating conditions: V CC = 5 V 5%, T A = 0 C to 70 C for commercial use. V CC = 5 V 10%, T A = -40 C to 85 C for industrial use. (2) If the device is operating in standby mode, increase the time by the amount shown. (3) The tPZX and tPXZ parameters are measured at 0.5 V from steady-state voltage that is driven by the specified output load. (4) This specification must be met to guarantee tEOI. If ILE goes high before data is valid, use tPD instead of tEOI. .com (1)
Notes to tables:
14
Altera Corporation
DataSheet 4 U .com
www..com
EP312 & EP324 Classic EPLDs
AC Operating Conditions: EP324 Combinatorial Mode
Symbol
tPD1 tPD2 tPZX tPXZ tPCLR tPSET
Note (1)
EP324-25 EP324-30 Non-Turbo Adder
Parameter
Input to non-registered output I/O to non-registered output, Input or I/O to output enable, Note (3) Input or I/O to output disable, Note (3) Input or I/O to asynchronous reset Input or I/O to asynchronous set
Conditions Min
C1 = 35 pF C1 = 35 pF C1 = 35 pF C1 = 5 pF C1 = 35 pF C1 = 35 pF
Max
25 25 25 25 25 25
Min
Max
30 30 30 30 30 30
Note (2)
20 20 20 20 20 20
Units
ns ns ns ns ns ns
Synchronous Clock Mode (Macrocells)
Symbol
fMAX fCNT1 fCNT2 tSU1 tSU1 tCO tCNT tCL tCH tCP
EP324-25
EP324-30
Non-Turbo Adder
Parameter
Maximum frequency (pipelined), no feedback Maximum counter frequency, external feedback Maximum counter frequency, internal feedback Input or I/O setup time to global clock Input or I/O setup time to global clock Input or I/O hold time from global clock Global clock to output delay Minimum global clock period Clock low time Clock high time Clock period
Min
66 33.3 33.3 12.5 12 0
Max
Min
50 25 28.5 20 20 0
Max
Note (2)
Units
MHz MHz MHz
20 20 0 20 35 0 20 0 0 0
ns ns ns ns ns ns ns ns
t4U.comtH
DataShee
17.8
.com
7 7 15
30 9 9 20
Synchronous Clock Mode (Input Structure)
Symbol
fMAXI tSUIR tESUI tCOI tEOI tHI tEHI tCHI tCLI tCPI
EP324-25
EP324-30
Non-Turbo Adder
Parameter
Maximum frequency input structure Input register/latch setup time to ILE/ICLK Input latch setup time to ILE, Note (4) ICLK to combinatorial output ILE up to combinatorial output Input hold after falling edge of ILE/ICLK Input hold after falling edge of ILE ILE/ICLK high time ILE/ICLK low time Minimum ICLK period
Min
66 1 1
Max
Min
50 2.5 2.5
Max
Note (2)
0 0
Units
MHz ns ns ns ns ns ns ns ns ns
30 30 8 7 7 7 15 9 8 9 9 20
35 35
20 20 0 0 0 0 0
.com
Altera Corporation 15
DataSheet 4 U .com
www..com
EP312 & EP324 Classic EPLDs
Asynchronous Clock Mode (Macrocells)
Symbol
fAMAX fACNT1 fACNT2 tASU1 tASU1 tAH tACO tACNT tACL tACH tACP
EP324-25
EP324-30
Non-Turbo Adder
Parameter
Maximum frequency (pipelined), no feedback Maximum counter frequency, external feedback Maximum counter frequency, internal feedback Input or I/O setup time to asynchronous clock Input or I/O setup time to asynchronous clock Input or I/O hold time from asynchronous clock Asynchronous clock to output delay Minimum global clock period Asynchronous clock low time Asynchronous clock high time Minimum asynchronous clock period
Min Max
66 27.7 33.3 11 11 3 25 30 7 7 15
Min Max
50 23.8 28.5 12 12 4 30 35 9 9 20
Note (2)
Units
MHz MHz MHz
20 20 0 20 20 20 20 20
ns ns ns ns ns ns ns ns
Asynchronous Clock Mode (Input Structure)
Symbol
f t4U.comAMAXI tASUIR tAESUI tACOI tAEOI tAHI tAEHI tACHI tACLI tACPI
EP324-25
EP324-30
Non-Turbo Adder
Parameter
Maximum frequency input structure Input register/latch setup time to asynchronous ILE/ICLK Asynchronous ICLK to combinatorial output Asynchronous ILE up to combinatorial output Input hold after falling edge of asynchronous ILE/ICLK Input hold after falling edge of asynchronous ILE Asynchronous ILE/ICLK high time Asynchronous ILE/ICLK low time Minimum ICLK period
Min Max
66 -5 30 30 15 14 7 7 15
Min Max
50 -5 -5 35 45 18 17 9 9 20
Note (2)
0 0 20 20 20 0 20 20 20
Units
MHz ns ns ns ns ns ns ns ns ns
DataShee
Input latch setup time to asynchronous ILE, Note (4) -5 .com
Input Clock to Macrocell Clock
Symbol
tC1C2 tC1C2 tC1C2 tC1C2
EP324-25
EP324-30
Non-Turbo Adder
Parameter
Synchronous ILE/ICLK to synchronous macrocell CLK Synchronous ILE/ICLK to asynchronous macrocell CLK Asynchronous ILE/ICLK to synchronous macrocell CLK Asynchronous ILE/ICLK to asynchronous macrocell CLK
Min Max
20 12.5 40 20
Min Max
25 15 45 25
Note (2)
20 20 20 20
Units
ns ns ns ns
Notes to tables:
(1) (2) (3) (4)
.com
16
Operating conditions: V CC = 5 V 5%, T A = 0 C to 70 C for commercial use. If the device is operating in standby mode, increase the time by the amount shown. The tPZX and tPXZ parameters are measured at 0.5 V from steady-state voltage that is driven by the specified output load. This specification must be met to guarantee tEOI. If ILE goes high before the data is valid, use tPD instead of tEOI.
Altera Corporation
DataSheet 4 U .com
www..com
EP312 & EP324 Classic EPLDs
Figure 8 shows the package pin-outs for EP312 and EP324 devices.
Figure 8. EP312 & EP324 Package Pin-Outs
Package outlines not drawn to scale. Windows in ceramic packages only.
CLK/INPUT INPUT
VCC
VCC
I/O
I/O 27
CLK/INPUT I/O INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT I/O GND
1 2 3 4 5 6 7 8 9
24 23 22 21 20 19 18 17 16
VCC I/O I/O I/O I/O I/O I/O I/O I/O I/O
4 INPUT INPUT INPUT INPUT INPUT INPUT NC 5 6 7 8 9 10 11 12 INPUT
3
2
1
28
26 25 24 23 22 21
I/O
I/O I/O I/O I/O I/O I/O NC
EP312
13 I/O 14 GND 15 GND 16 ILE/ICLK/INPUT 17 I/O
20 19 18 I/O
EP312
10 11 12
15 14 13
I/O ILE/ICLK/INPUT
t4U.com
24-Pin DIP .com
DataShee
28-Pin J-Lead
CLK/INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
NC
I/O
I/O
I/O
CLK/INPUT INPUT INPUT I/O I/O I/O I/O GND I/O I/O I/O I/O VCC I/O I/O I/O I/O INPUT INPUT INPUT
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
40 39 38 37 36 35 34 33 32 31 30 29 28 27 26
INPUT INPUT INPUT I/O I/O I/O I/O VCC I/O I/O I/O I/O GND I/O I/O I/O I/O INPUT INPUT ILE/ICLK/INPUT I/O I/O GND I/O I/O NC I/O I/O VCC I/O I/O 7 8 9 10 11 12 13 14 15 16 17
6
5
4
3
2 1 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 I/O I/O VCC I/O I/O NC I/O I/O GND I/O I/O
EP324
18 19 20 21 22 23 24 25 26 27 28 I/O ILE/ICLK/INPUT INPUT INPUT INPUT INPUT INPUT I/O I/O NC I/O
I/O 29
EP324
16 17 18 19 20
25 24 23 22 21
40-Pin DIP
44-Pin J-Lead
.com
Altera Corporation 17
DataSheet 4 U .com
www..com
EP312 & EP324 Classic EPLDs
Package Outlines Product Availability
Refer to "Altera Device Package Outlines" in the Altera Data Book for detailed information on packages outlines.
Table 3 gives the availability and ordering codes for EP312 and EP324 devices. Altera will accept Intel product names and ordering codes for Intel devices until June 30, 1995, after which only Altera product names and ordering codes will be accepted.
Table 3. EP312 & EP324 Availability
Device
EP312
Temperature Grade
Commercial temperature (0 C to 70 C)
Speed Grade
-25 -30 -25 -30 -25 -30
Package
24-pin CerDIP 24-pin CerDIP 24-pin PDIP 24-pin PDIP 28-pin PLCC 28-pin PLCC
Altera Ordering Code
EP312DC-25 EP312DC-30 EP312PC-25 EP312PC-30 EP312LC-25 EP312LI-30
Former Intel Ordering Code
D5AC312-25 D5AC312-30 P5AC312-25 P5AC312-30 N5AC312-25 TNAC312-30
t4U.com
EP324
Industrial temperature (-40 C to 85 C) Commercial temperature (0 C to 70 C)
-30 -25 -30 -25 -30
40-pin CerDIP EP324DC-30 .com 40-pin PDIP EP324PC-25 40-pin PDIP EP324PC-30 44-pin PLCC EP324LC-25 44-pin PLCC EP324LC-30
D5AC324-30 P5AC324-25 P5AC324-30 N5AC324-25 N5AC324-30
(R)
.com
18
2610 Orchard Parkway San Jose, CA 95134-2020 (408) 894-7000 Applications Hotline: (800) 800-EPLD Customer Marketing: (408) 894-7104 Literature Services: (408) 894-7144
Altera, MAX, MAX+PLUS, and FLEX are registered trademarks of Altera Corporation. The following are trademarks of Altera Corporation: MAX+PLUS II, AHDL, and FLEX 10K. Altera acknowledges the trademarks of other organizations for their respective products or services mentioned in this document, specifically: Verilog and Verilog-XL are registered trademarks of Cadence Design Systems, Inc. Mentor Graphics is a registered trademark of Mentor Graphics Corporation. Synopsys is a registered trademark of Synopsys, Inc. Viewlogic is a registered trademark of Viewlogic Systems, Inc. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. Copyright (c) 1996 Altera Corporation. All rights reserved.
Altera Corporation
Printed on Recycled Paper.
DataSheet 4 U .com


▲Up To Search▲   

 
Price & Availability of EP312

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X